

Country	Institution	Module Description	ECTS			
PRT	PrAFA	Propulsion Systems	2			
Service	Officers:	Minimum Qualification for Lecturers				
	 English: Co Level B2 o 	 English: Common European Framework of Reference for Languages (CEFR) Level B2 or NATO STANAG Level 3. 				
	 Thorough I 	 Thorough knowledge in Propulsion Systems 				
	 Adequate knowledge in Thermodynamics and heat exchange 					
	 Adequate knowledge in Principles of Flight and Aerodynamics 					
	 Adequate knowledge in Military Aviation 					
Language	Civilian Lecturers:					
English	 English: Common European Framework of Reference for Languages (CEFF Level B2 or NATO STANAG Level 3. 					
	 Thorough I 	nowledge in Propulsion Systems				
	 Adequate I 	nowledge in Thermodynamics and heat exchange				
	 Adequate I 	nowledge in Principles of Flight and Aerodynamics				
	 Adequate knowledge in Military Aviation 					
		Goal of the Module				

Prerequisites for international participants:

- English: Common European Framework of Reference for Languages (CEFR) Level B1 or NATO STANAG Level 2.
- At least 1 year of national (military) higher education.

Goal of the Module

- To broaden the knowledge on Propulsion Systems for Aircraft, especially for Air Breathing Internal Combustion and Gas Turbine Engines
- To gain sufficient insight to comprehend the working principles of the engine types mostly used in aviation
- To acquire knowledge and understand the thermodynamic principles of air breading combustion engines
- To identify different types of engines, engine components, accessories used in aviation
- To engage in a multi-national course where all students are expected to bring their knowledge and contribution to the lectures and teaching sessions

ig outcomes	Know-	 To foster the interest of young cadets in the topics of propulsion, fluid dynamics and thermodynamics;
		 To gain technical knowledge on Internal Combustion engine and Gas Turbine engine mechanical and thermodynamic principles;
	ledge	 To acquire in-depth knowledge on the main factors affecting powerplant design and selection for different types of aircraft;
		 To understand and identify the main pros and cons on each engine type and configuration, depending on the type of application;
nir		Technical
Leari	Skills	 To understand and apprehend the working principles of internal combustion and jet/turbo engines;
		 To identify different types of engines, engine components and accessories;

Page 1 of 9

Draft: João Caetano	28th January 2021
Revised by Ioannis Templalexis; Roussos Papagiannakis	31st January 2021
Approved by the Project Committee	XXXXXX

Sec AT 18)	International Air Force Semester IO: 1 or 2 Doc.: Date : 31st January 2021 Origin: PrAFA
		 To identify the main technical design variables that influence the selection of a powerplant design feature and powerplant selection for a
		specific type of aircraft;
		To understand the main limitations of current engines and propellers;
		 Transversal Develop a multi-cultural awareness; Improve team spirit, in heterogeneous, multi-cultural environment; To improve English language level and skills; To develop communication skills;
	Deers and it life	 To considerably increase independence and autonomy in solving problems;
		 To grow and foster transnational cooperation spirit, engaging in multi- national classes and projects;
	Autonomy	 To develop the student's sense of responsibility and understanding of foreign nation's AFA's rules, culture and history;

Page 2 of 9	
Draft: João Caetano	28 th January 2021
Revised by Ioannis Templalexis; Roussos Papagiannakis	31 st January 2021
Approved by the Project Committee	XXXXXX

International Air Force Semester IO: 1 or 2 Doc.: Date : 31st January 2021 Origin: PrAFA

Verification of Learning Outcomes		
	• The lecturer is responsible for the in-class observation of the Learning Outcomes detailed above, especially, on the items related with Knowledge and Skills;	
Observation	• The lecturer should promote excel in-class environment and enough ease and proximity with the students to allow them to participate, ask questions and share experiences;	
	 The lecturer will promote the participation of all students, equally, and assess their interest, responses and dedication; 	
Test	• A 1-hour exam will be provided at the end of the course. All questions will have a multiple answer decision sheet;	
Assignment	• The class will be divided in groups. Each group will be given a topic to develop and present in-class. Presentation should be less than 1 hour in total, for each group.	
Case study	• N/A	

Page 3 of 9	
Draft: João Caetano	28 th January 2021
Revised by Ioannis Templalexis; Roussos Papagiannakis	31 st January 2021
Approved by the Project Committee	XXXXXX

Module Details		
Main Topic	Recom- mended WH	Details
Internal Combustion (IC) Introduction and Thermodyna mic Principles	3	 Introduction to Piston Engines: Thermodynamic notions, Compression Ratio, Otto cycle, Power, Torque, Specific Fuel Consumption;
IC Engine Lubrication, Cooling and Ignition	2	 Lubrication system: Brief description, main components (Oil Tank, Suction Filter, The Pressure Pump, The Check Valve, Scavenge Pump, Oil Cooler, Lubrication Monitoring Instruments), , Types and properties of lubricants; Engine cooling system: Brief description, main system types (Liquid and Air Cooling systems), Engine ignition system: Brief description (magneto and dual), main components (capacitor, ground wire, auxiliary starting devices, venting);
IC Fuel, Mixture, Carburettors, Icing, Fuel Injection	3	 Air/fuel mixture (actual and stoichiometric), air/fuel excess ratio (λ_α). Air/fuel mixture preparation systems: Brief description (Garburator, Injection), main components (Fuel Pumps, manifold valve, air control unit, discharge nozzle), Carburettor icing and relevant actions to be taken, engine slow running and starting, power enrichment, accelerator pump, engine priming Combustion process in Otto engine: Flame kernel, flame propagation rate, combustion rate, type of fuel, ignition timing. Abnormal combustion process: Knocking, detonation its causes and effects, anti-detonation properties, fuel additives, pre-ignition, effect on engine performance characteristics. ;
IC Performance, Supercharge and propellers	2	 Engine Performance: Brake power/torque/BSFC vs air density, altitude, engine operation point (load, engine speed) Supercharging systems: Brief description, system types, main components (Centrifugal compressor, wastegate, drive); Propeller analysis: Components and characteristics, fixed pitch, variable pitch, alpha and beta range, CSP, PCU, Synchronizing;
Gas Turbine Engine (GTE) Introduction, Principles and types of engines	3	 Introduction to GTE: Joule cycle, Power, Specific Fuel Consumption. Working principles, Main engine types (Turbojet, Turbofan, Turboprop, Turboshaft.) Main engine layouts (single and multispool engines); Gas turbine performance: Thrust/Inlet momentum drag/TSFC vs altitude, airspeed, ambient conditions;
GTE Inlets and Compressors	3	Air Inlets, main performance aspects.Compressor: Brief description, main types (centrifugal, axial flow).

 Draft: João Caetano______28th January 2021

 Revised by loannis Templalexis; Roussos Papagiannakis_______31st January 2021

 Approved by the Project Committee _______XXXXXX

Page 4 of 9

		 Unstable compressor operation mode (stall, surge), and methods to prevent it (variable stator vanes, bleed valves, multispool design) 	
GTE Combustion Chambers and Turbine Assembly		• Combustion chamber: Brief description (Primary air, secondary air flows), main types (annular, can-annular, can) and components (fuel drain, airspray, vaporizers).	
	2	Combustion chamber performance: pressure loss, efficiency;	
	3	 Turbine: brief description, main types (radial, axial flow), main design aspects (blade loading, number of stages, blade materials, blade shape, blade fixing) 	
		Turbine performance: temperature profile, and power losses;	
GTE Exhaust and	2	 Exhaust systems: Brief description in case of mixed and unmixed flow engines, main components (nozzle -convergent-divergent-, jet pipe, noise suppression), danger areas in the vicinity of an engine and aircraft with engine on; 	
Lubrication		 Lubrication systems: Brief description, main components (oil tank, oil pump, magnetic chip, filters, oils); 	
GTE Thrust, Reverse and	1	 Thrust reversal systems: Brief description, main types (reverse, external, clamshell, bucket, blocker doors); 	
Gearboxes		Gearboxes and accessories;	
Revision and	2	 Overhaul of the course, with highlight of most important knowledge items 	
discussions	2	 Buffer Lecture for discussions, presentations and clarifications on the subjects 	
Test	1	Module examination	
Subtotal WH	25		
		Self-Study Hours	
Internal Combustion (IC) Introduction	3	 Introduction to Piston Engines: Thermodynamic notions, Compression Ratio, Otto cycle, Power, Torque, Specific Fuel Consumption; 	
IC		 Lubrication system: Brief description, main components (Oil Tank, Suction Filter, The Pressure Pump, The Check Valve, Scavenge Pump, Oil Cooler, Lubrication Monitoring Instruments), , Types and properties of lubricants; 	
Engine Lubrication.	3	 Engine cooling system: Brief description, main system types (Liquid and Air Cooling systems), 	
Cooling and Ignition		 Engine ignition system: Brief description (magneto and dual), main components (capacitor, ground wire, auxiliary starting devices, venting); 	
		 Preparation of lecture summary study notes; 	
		Preparation of presentation on topic (1 group at a time)	
IC Fuel, Mixture		• Air/fuel mixture (actual and stoichiometric), air/fuel excess ratio (λ_{α}).	
Carburettors, Icing, Fuel Injection	3	 Air/fuel mixture preparation systems: Brief description (Garburator, Injection), main components (Fuel Pumps, manifold valve, air control unit, discharge nozzle), Carburettor icing and relevant actions to be 	

 Page 5 of 9

 Draft: João Caetano______28th January 2021

 Revised by Ioannis Templalexis; Roussos Papagiannakis_______31st January 2021

 Approved by the Project Committee _______XXXXXX

		taken, engine slow running and starting, power enrichment, accelerator nump, engine priming
		 Combustion process in Otto engine: Flame kernel, flame propagation rate, combustion rate, type of fuel, ignition timing.
		 Abnormal combustion process: Knocking, detonation its causes and effects, anti-detonation properties, fuel additives, pre-ignition, effect on engine performance characteristics.
		 Preparation of lecture summary study notes;
		 Preparation of presentation on topic (1 group at a time)
		 Engine Performance: Brake power/torque/BSFC vs air density, altitude, engine operation point (load, engine speed)
IC Performance,	2	 Supercharging systems: Brief description, system types, main components (Centrifugal compressor, wastegate, drive);
and propellers	3	 Propeller analysis: Components and characteristics, fixed pitch, variable pitch, alpha and beta range, CSP, PCU, Synchronizing; Preparation of lecture summary study notes;
		 Preparation of presentation on topic (1 group at a time)
Gas Turbine		• Introduction to GTE: Joule cycle, Power, Specific Fuel Consumption.
Engine (GTE) Introduction,	4	 Working principles, Main engine types (Turbojet, Turbofan, Turboprop, Turboshaft.) Main engine layouts (single and multispool engines);
and types of engines		 Gas turbine performance: Thrust/Inlet momentum drag/TSFC vs altitude, airspeed, ambient conditions;
	3	Air Inlets, main performance aspects.
GTE Inlote		Compressor: Brief description, main types (centrifugal, axial flow).
GTE Inlets and Compressors		 Unstable compressor operation mode (stall, surge), and methods to prevent it (variable stator vanes, bleed valves, multispool design) Preparation of lecture summary study notes;
		 Preparation of presentation on topic (1 group at a time)
		 Combustion chamber: Brief description (Primary air, secondary air flows), main types (annular, can-annular, can) and components (fuel drain, airspray, vaporizers).
GTE	3	Combustion chamber performance: pressure loss, efficiency;
Combustion Chambers and Turbine		 Turbine: brief description, main types (radial, axial flow), main design aspects (blade loading, number of stages, blade materials, blade shape, blade fixing)
Assembly		Turbine performance: temperature profile, and power losses;
		 Preparation of lecture summary study notes;
		 Preparation of presentation on topic (1 group at a time)
GTE Exhaust	3	• Exhaust systems: Brief description in case of mixed and unmixed flow engines, main components (nozzle -convergent-divergent-, jet pipe, noise suppression), danger areas in the vicinity of an engine and aircraft with engine on;
and Lubrication		 Lubrication systems: Brief description, main components (oil tank, oil pump, magnetic chip, filters, oils);
		 Preparation of lecture summary study notes;
		 Preparation of presentation on topic (1 group at a time)

Page 6 of 9	
Draft: João Caetano	28 th January 2021
Revised by Ioannis Templalexis; Roussos Papagiannakis	31 st January 2021
Approved by the Project Committee	XXXXXX

GTE Thrust, Reverse and Gearboxes	2	 Thrust reversal systems: Brief description, main types (reverse, external, clamshell, bucket, blocker doors); Gearboxes and accessories; Preparation of lecture summary study notes; Preparation of presentation on topic (1 group at a time) 	
Studying for final examination	3	 Studying for final examination; 	
Subtotal WH	30		
Total WH	55		

Page 7 of 9	
Draft: João Caetano	28 th January 2021
Revised by Ioannis Templalexis; Roussos Papagiannakis	31st January 2021
Approved by the Project Committee	XXXXXX

International Air Force Semester IO: 1 or 2 Doc.: Date : 31st January 2021 Origin: PrAFA

List of Abbreviations:

Air Force	AF
Brake Specific Fuel Consumption	BSFC
Common European Framework of Reference for Languages	CEFR
Constant Speed Propeller	CSP
European Credit Transfer and Accumulation System	ECTS
Gas Turbine Engine	GTE
Internal Combustion	IC
North Atlantic Treaty Organisation	NATO
Power Control Unit	PCU
Standardization Agreement	STANAG
Specific Fuel Consumption	SFC
Thrust Specific Fuel Consumption	TSFC

Acknowledgement

The course syllabus was developed in the context of the Strategic Partnership Project "International Air Force Semester" under the contract No. 2020-1-EL01-KA203-079068 cofunded by the Erasmus+ Programme of the European Union.

International Air Force Semester 2020-1-EL01-KA203-079068

 International Air Force Semester

 IO:
 1 or 2

 Doc.:
 Date :
 31st January 2021

 Origin:
 PrAFA

The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Co-funded by the Erasmus+ Programme of the European Union

Page 9 of 9	
Draft: João Caetano	28 th January 2021
Revised by Ioannis Templalexis; Roussos Papagiannakis	31 st January 2021
Approved by the Project Committee	XXXXXX